40 research outputs found

    Adaptive FE-BE Coupling for Strongly Nonlinear Transmission Problems with Coulomb Friction

    Full text link
    We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L^p- and L^2-Sobolev spaces.Comment: 27 pages, 3 figure

    Dual-dual formulation for a contact problem with friction

    Get PDF
    A variational inequality formulation is derived for some frictional contact problems from linear elasticity. The formulation exhibits a two-fold saddle point structure and is of dual-dual type, involving the stress tensor as primary unknown as well as the friction force on the contact surface by means of a Lagrange multiplier. The approach starts with the minimization of the conjugate elastic potential. Applying Fenchel's duality theory to this dual minimization problem, the connection to the primal minimization problem and a dual saddle point problem is achieved. The saddle point problem possesses the displacement field and the rotation tensor as further unknowns. Introducing the friction force yields the dual-dual saddle point problem. The equivalence and unique solvability of both problems is shown with the help of the variational inequality formulations corresponding to the saddle point formulations, respectively.This work is supported by the German Research Foundation within the priority program 1180 Prediction and Manipulation of Interactions between Structure and Process

    High-order space-time finite element schemes for acoustic and viscodynamic wave equations with temporal decoupling

    Get PDF
    Copyright @ 2014 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.We revisit a method originally introduced by Werder et al. (in Comput. Methods Appl. Mech. Engrg., 190:6685–6708, 2001) for temporally discontinuous Galerkin FEMs applied to a parabolic partial differential equation. In that approach, block systems arise because of the coupling of the spatial systems through inner products of the temporal basis functions. If the spatial finite element space is of dimension D and polynomials of degree r are used in time, the block system has dimension (r + 1)D and is usually regarded as being too large when r > 1. Werder et al. found that the space-time coupling matrices are diagonalizable over inline image for r ⩽100, and this means that the time-coupled computations within a time step can actually be decoupled. By using either continuous Galerkin or spectral element methods in space, we apply this DG-in-time methodology, for the first time, to second-order wave equations including elastodynamics with and without Kelvin–Voigt and Maxwell–Zener viscoelasticity. An example set of numerical results is given to demonstrate the favourable effect on error and computational work of the moderately high-order (up to degree 7) temporal and spatio-temporal approximations, and we also touch on an application of this method to an ambitious problem related to the diagnosis of coronary artery disease

    Quasi-optimal degree distribution for a quadratic programming problem arising from the p-version finite element method for a one-dimensional obstacle problem

    Get PDF
    We present a quadratic programming problem arising from the p-version for a finite element method with an obstacle condition prescribed in Gauss-Lobatto points. We show convergence of the approximate solution to the exact solution in the energy norm. We show an a-priori error estimate and derive an a-posteriori error estimate based on bubble functions which is used in an adaptive p-version. Numerical examples show the superiority of the p-version compared with the h-version. © 2013 Elsevier B.V. All rights reserved

    Residual-based a posteriori error estimate for hypersingular equation on surfaces

    Get PDF
    The hypersingular integral equation of the first kind equivalently describes screen and Neumann problems on an open surface piece. The paper establishes a computable upper error bound for its Galerkin approximation and so motivates adaptive mesh refining algorithms. Numerical experiments for triangular elements on a screen provide empirical evidence of the superiority of adapted over uniform mesh-refining. The numerical realisation requires the evaluation of the hypersingular integral operator at a source point; this and other details on the algorithm are included
    corecore